

Chen, Meng, Baglee, David, Chu, Jiang Wei, Du, Danfeng and Guo, Xiurong (2017) Photocatalytic oxidation of NOx under visible light on asphalt pavement surface. Journal of Materials in Civil Engineering, 29 (9). p. 1. ISSN 0899-1561

Downloaded from: http://sure.sunderland.ac.uk/id/eprint/7100/

Usage gu	idelines					
Please	refer	to	the	usage	guidelines	at
http://sure	e.sunderland	.ac.uk/po	licies.html	or	alternatively	contact
sure@sun	derland.ac.u	k.				

Chen, Meng, Baglee, David, Chu, Jiang Wei, Du, Danfeng and Guo, Xiurong (2017) Photocatalytic oxidation of NOx under visible light on asphalt pavement surface. Journal of Materials in Civil Engineering, 29 (9). ISSN 0899-1561

Downloaded from: http://sure.sunderland.ac.uk/7100/

Usage guidelines

Please refer to the usage guidelines at http://sure.sunderland.ac.uk/policies.html or alternatively contact sure@sunderland.ac.uk.

1	Photocatalytic oxidation of NO _x under visible light on asphalt pavement surface
2	Meng Chen ¹ , David.Baglee ² , Jiang Wei Chu ³ , Dan feng Du ⁴ , Xiu rong Guo ⁵
3	¹ College of Traffic, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin,
4	150040, P.R. China, E-mail: chenmeng623@126.com
5	² Faculty of Applied Sciences, University of Sunderland, ST PETERS WAY, Sunderland, SR6
6	0DD, United Kingdom, E-mail: David.Baglee@sunderland.ac.uk
7	³ College of Traffic, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin,
8	150040, P.R. China, E-mail: wildlife_deer@126.com
9	⁴ College of Traffic, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin,
10	150040, P.R. China, E-mail: chenyuqi0831@163.com
11	⁵ College of Mechanical and Electrical engineering, Northeast Forestry University, 26 Hexing
12	Road, Xiangfang District, Harbin, 150040, P.R. China, E-mail: 785199452@qq.com
12 13	Road, Xiangfang District, Harbin, 150040, P.R. China, E-mail: 785199452@qq.com Corresponding author : Xiu rong Guo
12 13 14	Road, Xiangfang District, Harbin, 150040, P.R. China, E-mail: 785199452@qq.com Corresponding author : Xiu rong Guo
12 13 14 15	Road, Xiangfang District, Harbin, 150040, P.R. China, E-mail: 785199452@qq.com Corresponding author : Xiu rong Guo Abstract:
12 13 14 15 16	Road, Xiangfang District, Harbin, 150040, P.R. China, E-mail: 785199452@qq.com Corresponding author : Xiu rong Guo Abstract: This work examines the potential use of heterogeneous photocatalysis as an innovative oxidation
12 13 14 15 16 17	Road, Xiangfang District, Harbin, 150040, P.R. China, E-mail: 785199452@qq.com Corresponding author : Xiu rong Guo Abstract: This work examines the potential use of heterogeneous photocatalysis as an innovative oxidation technology. The aim is to demonstrate that this technology cand reduce the damaging effects of
12 13 14 15 16 17 18	Road, Xiangfang District, Harbin, 150040, P.R. China, E-mail: 785199452@qq.com Corresponding author : Xiu rong Guo Abstract: This work examines the potential use of heterogeneous photocatalysis as an innovative oxidation technology. The aim is to demonstrate that this technology cand reduce the damaging effects of vehicle emissions by using nitrogen doped (N-doped) TiO ₂ as a photocatalyst immobilized above
12 13 14 15 16 17 18 19	Road, Xiangfang District, Harbin, 150040, P.R. China, E-mail: 785199452@qq.com Corresponding author : Xiu rong Guo Abstract: This work examines the potential use of heterogeneous photocatalysis as an innovative oxidation technology. The aim is to demonstrate that this technology cand reduce the damaging effects of vehicle emissions by using nitrogen doped (N-doped) TiO ₂ as a photocatalyst immobilized above the asphalt road surface. In the study, the photocatalytic effectiveness and durability of N-doped
12 13 14 15 16 17 18 19 20	Road, Xiangfang District, Harbin, 150040, P.R. China, E-mail: 785199452@qq.com Corresponding author : Xiu rong Guo Abstract: This work examines the potential use of heterogeneous photocatalysis as an innovative oxidation technology. The aim is to demonstrate that this technology cand reduce the damaging effects of vehicle emissions by using nitrogen doped (N-doped) TiO ₂ as a photocatalyst immobilized above the asphalt road surface. In the study, the photocatalytic effectiveness and durability of N-doped TiO ₂ photocatalytic asphalt road material were assessed in both the laboratory and the field using
12 13 14 15 16 17 18 19 20 21	Road, Xiangfang District, Harbin, 150040, P.R. China, E-mail: 785199452@qq.com Corresponding author : Xiu rong Guo Abstract: This work examines the potential use of heterogeneous photocatalysis as an innovative oxidation technology. The aim is to demonstrate that this technology cand reduce the damaging effects of vehicle emissions by using nitrogen doped (N-doped) TiO ₂ as a photocatalyst immobilized above the asphalt road surface. In the study, the photocatalytic effectiveness and durability of N-doped TiO ₂ photocatalytic asphalt road material were assessed in both the laboratory and the field using direct and indirect measurement. The experimental results show that under visible light irradiation,

- 22 N-doped TiO₂ asphalt road material has a higher activity compared with pure TiO₂ asphalt road
- 23 material. The decontamination rate for NO_x is about 27.6%, 24.6%, 16.3%, and 13.8% under

24	irradiation at light wavelengths of 330-420 nm, 430-530 nm, 470-570 nm and 590-680 nm,
25	respectively. Results of the field test and prediction models suggest that the service life of
26	N-doped TiO ₂ asphalt road material is approximately 13 months.
27	
28	Key word: Photocatalyst; N-doping; visible light; Photocatalytic asphalt pavement; Nitrogen
29	oxides
30	
31	Introduction
32	Urban areas experience high levels of traffic exhaust, which contribute to air pollution, which
33	is a major global concern (Ishihara et al. 2010). Many governments have introduced emission
34	reduction systems in order to decrease emissions. In spite of these efforts, traffic has continued
35	to increase, adding to concerns about the influence of traffic emissions on health and the
36	environment. Researchers have found that asthma is associated with nitrogen oxide (NO _x), which
37	pedestrians are exposed to due in part to the proximity of roads to walkways. Motor vehicle
38	emissions must be decreased in order to reduce nitrogen oxide emissions, and thus reduce asthma
39	rates (Tarek Mohamed et al. 2009). There are a number of methods that can be used to eliminate
40	NO _x and other pollutants.
41	Recently, heterogeneous photocatalysis has emerged as an ecological technique for

41 Recently, heterogeneous photocatalysis has emerged as an ecological technique for 42 controlling air pollutants. In this technique, TiO_2 and pavement materials (such as cement and 43 asphalt) are used together as a photocatalyst; this method has been found to be a promising and 44 valid technology for NO_x control. The de-polluting properties of TiO_2 photocatalytic materials 45 have been assessed by applying this method both in real-world use and in laboratory simulations

46	performed under different experimental conditions. Pone and Cheung (2006) evaluated the NO
47	removal paving blocks produced by waste materials and TiO ₂ . Their study included an optimum
48	mix design incorporating recycled sand, glass, 10% TiO ₂ , and cement achieved 4.01 mgh ⁻¹ m ⁻² NO
49	removal. Husken et al., (2007) performed a comparative analysis of different photocatalytic
50	cementitious products in an optimum laboratory conditions. They found that the efficiency of $\ensuremath{\text{NO}}_x$
51	degradation varied significantly, with some products achieving 40% degradation while others had
52	no influence. In Bergamo, Italy in 2006 (Guerrini and Peccati. 2007) a 12,000 m ² area, was
53	developed on the sidewalk and the road using active paving blocks. Environmental monitoring
54	showed an average NO _x abatement of 45% during the daytime (09:00 17:00).
55	In asphalt roads, based on the porous characteristics of asphalt road materials, Meng Chen et
56	al. (2010) used permeability technology to apply asphalt nano-TiO ₂ as an environmental
57	protection material. This test showed that this type of photochemical catalysis environmental
58	protection material had a purification function and the ability to protect the environment. Marwa
59	Hassan et al. (2013) used the pray method to make photocatalytic asphalt pavements. Laboratory
60	evaluation showed that the maximum NO _x removal efficiency was reached at an application rate
61	of 0.05 L/m ² . A research team in Italy used a mixed method approach to develop environmental
62	protection materials. TiO ₂ was added into asphalt pavements as an apparent layer that is sprayed
63	onto existing pavements. The decrease in efficiency was dependent on the type of $\mathrm{Ti}O_2$
64	nanoparticles used, and the NO_x decrease efficiency ranged from 20–57% (Venturini et al. 2009).
65	Photocatalytic asphalt pavements mainly use anatase phase TiO ₂ . The TiO ₂ band gap is 3.2eV,
66	which corresponds to wavelengths less than 388 nm. This limits the photocatalytic practice in the
67	UV light region, which amounts to 4% of the solar spectrum, while the key part (45%) falls under

68	the visible light region (Chun-Hung et al. 2010). Few studies have attempted to use photocatalytic
69	asphalt pavements under visible light irradiation. Therefore, this study focuses on making a
70	photocatalytic asphalt pavement material. As an innovative oxidation technology, it is able to
71	reduce the damaging effects of vehicle emissions by using N-doped TiO_2 as a photocatalyst that is
72	immobilized above the asphalt road's surface under visible light irradiation. The decontamination
73	effect and application durability of the photocatalytic asphalt pavement material are also analyzed
74	in this study.
75	
76	Experimental
77	Photocatalysts preparation
78	A non-metal doping approach (N-doped TiO_2) was used to extend the utilization of the visible
79	region in the solar spectrum. Titanium powder was prepared using a sol-gel approach that used
80	tetrabutyl titanate (TNBT) and distilled water as the titanium precursor and hydrolyzing agent.
81	First, TNBT was mixed with ethanol and distilled water. Then, the mixed solution was stirred
82	using a machine under an 85 $^\circ\!\mathrm{C}$ temperature bath for 6 hours. The slurry was dried at 80 $^\circ\!\mathrm{C}$ and
83	calcined at 400 $^\circ\!C$ for one hour. Finally, a white powder was obtained, which was pure TiO_2 (see
84	Figure 1).
85	The pure TiO_2 powder was mixed with urea at molar ratios of 2:1, and then ground in an
86	agate mortar for homogeneity. The mixed powders were heated in a muffle furnace at 500 °C for 3

87 h, resulting in N-doped TiO_2 (Figure 1).

Figure 1 shows that the N-doped sample appears yellow in color, compared to the white color of the pure TiO₂. Giacomo Barolo (2012) and Shinri Sato (1986) also observed these differences 90 in color and found that the yellow-colored N-TiO₂ had greater photocatalytic activity.

91 Preparation of asphalt road material through the addition of N-doped TiO₂ nanoparticles

92	We performed a series of penetrating load tests in order to attain a photocatalytic asphalt road
93	material sample. First, based on our preliminary research (Meng and Yan hua. 2010), the penetrant
94	and modified N-doped TiO_2 with silane coupling reagent were prepared. Then, the solution of
95	mixed penetrant and modified N-doped TiO2 was sprayed onto the bituminous sample's surface. In
96	the load process, every sample was sprayed three times by an atmospheric air compressor. The
97	caliber of the air compressor was 1.5mm and the air pressure was 3.0-3.5MPa. The samples were
98	sprayed at a distance of approximately 20 cm and the speed of the aqueous solution jet was set at
99	8-10g/s.
100	Figure 2 and 3 display the schemes of the asphalt road material sample before and after spraying.
101	
102	Analytical methods
103	Material property analytical methods
104	A scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were
105	used in this research in order to analyze the material properties of the N-doped TiO_2 and the
106	photocatalytic asphalt road material. The SEM was a commercial Hitachi S2300 instrument with a
107	tungsten hairpin filament. An accelerating voltage of 25 keV was used on gold samples to
108	eliminate charging. Transmission electron microscopy analyses were performed using a JEM-2010

110 Photocatalytic degradation analytical methods

- 112 pollutant removal efficiency. Direct measurements were used in laboratory tests. In the laboratory
- 113 test, 500 ppb of NO_x was put into the measurement system. After flowing through the

114 photocatalytic asphalt road material, it was exported via the purification examination photoreactor

115 of the system. Measurement results of the inlet and outlet of photoreactor show that the total NO_x

116 concentration, the NO conversion, NO₂ conversion, and NO_x conversion were:

$$117 NO_x = NO + NO_2 (1)$$

118
$$NO_{conversion} = \left(\frac{C_{NOin} - C_{NOlight}}{C_{NOin}} - \frac{C_{NObin} - C_{NOsb}}{C_{NObin}}\right) \times 100\%$$
(2)

119
$$NO_{2conversion} = \left(\frac{C_{NO_{2}in} - C_{NO_{2}light}}{C_{NO_{2}in}} - \frac{C_{NO_{2}bin} - C_{NO_{2}sb}}{C_{NO_{2}bin}}\right) \times 100\%$$
(3)

120
$$NO_{Xconversion} = \left(\frac{C_{NO_{X}in} - C_{NO_{X}light}}{C_{NO_{X}in}} - \frac{C_{NO_{X}bin} - C_{NO_{X}sb}}{C_{NO_{X}bin}}\right) \times 100\%$$
(4)

121

122 The parameter meaning of equations 1,2, 3, and 4 are described in table 1.

123 The concentration of nitrates serves as evidence of a photocatalytic decrease of NO_x . 124 Nitrates that accumulate on the pavement surface were measured by dissolving them in deionized 125 water. Using the Japanese industrial standard (JIS TR Z 0018 "Photocatalytic materials--- air 126 purification test procedure"), the nitrogen compound eluted from the test piece was calculated 127 using the following formula (David et al. 2014):

128
$$Q_{w} = Q_{w1} + Q_{w2} = V_{w1} [(NO_{3}^{-})_{w1} / 62] + [(NO_{3}^{-})_{w2} / 62]$$
(5)

129 where $Q_w =$ nitrogen compound eluted from the test piece (µmol); $V_w =$ volume of collected

130 washing (mL); NO_3^- = nitrate ion centration eluent from the test piece (mg/L); and W_1 and W_2 =

132 Experimental testing: testing system and set-up

133 Experimental testing system

134 Photocatalytic degradation of NO_x was carried out using a continuous flow system that included a gas supply subsystem, photoreactor, and the analytic subsystem. NO_x, N₂, and 135 136 humidified air were supplied in the gas supply subsystem. Humidified air was prepared by 137 bubbling air through a gas wash bottle containing water. The desired water vapor level can be 138 obtained by varying the flow rate of the humidified air stream. To obtain a stable NO_x 139 concentration, NO_x is mixed with humidified air in a gas mixer. During the experiments, gas flow 140 rates are controlled by calibrated flow meters. The photoreactor in the flow system is made of 141 quartz glass in accordance with the American Material Test Association standard (ASTMD 142 5116-1990) and the Japanese industrial standard (photochemical catalysis material-air purification 143 performance test method (Marwa et al. 2010)). To simulate on-road automobile exhaust, the 144 photoreactor is divided into three parts (1) an inlet, (2) purification region and (3) outlet. The inlet 145 section is nearly a cylinder; a fan controls the stream gas velocity. The purification section is 146 rectangular, which simulates the road surface. Humidity and temperature sensors and a heater 147 were installed in the photoreactor, and the photoreactor was irradiated by a simulation light source. 148 Figure 4 shows the entire photoreactor structure. In the analytic subsystem, NO, NO_2 , and NO_x 149 concentration is measured by the analyzer.

150

151 Testing set-up

Photocatalytic activity rests: Previous studies on photocatalytic asphalt roads have shown that
illumination by a light source is an essential condition for photodegradation of NO_x. Light source

154	illumination can cause the formation of electron-hole pairs on the photocatalytic asphalt road
155	material and the electron-hole pair purified NO _x (Meng and Yan hua. 2010). In this study, we
156	attempt to increase insight into the reduction of NO_x under photocatalytic asphalt road material by
157	looking at the influence of the light source on the process.
158	During the serial experiment, the photocatalytic activity of N-doped TiO ₂ photocatalytic

- asphalt road material was investigated by assessing the NO_x decomposition in the photoreactor.
- 160 The experiment consisted of three steps.
- 161 Step 1: the sample was kept in the dark for 40 min, in order to achieve adsorption and desorption
- 162 equilibrium of NO_x gas in the photoreactor.
- 163 Step 2: the light source was switched on. The range of the light wavelength is 330-420 nm,

164 430–530 nm (blue LED), 470–570 nm (green LED), and 590–680 nm (red LED).

- 165 Step 3: Photocatalytic characterizations of samples were shown using different NO_x concentration
- 166 or decontamination rates. Direct measurement was used throughout the experiment.
- 167 Tests of application durability: In order to measure long term effects and examine
- 168 decontamination durability, it is necessary to apply N-doped TiO₂ photocatalytic to asphalt road
- 169 material to decontaminate exhaust from traffic in an outdoor environment. Vehicular activity and
- 170 rainwash are major influencing factors in actual outdoor traffic environments.
- 171 A field and simulation test were adopted in order to predict the durability of the N-doped
- 172 TiO₂ asphalt road material. In the field test, the test roads were washed once per week. At the same
- time, traffic volume, temperature, wind direction, wind speed, and humidity were recorded.
- 174 During the test, the UV-vis spectroscopy (TU-1901) was used to determine absorbency of the
- 175 gathered sample by N-(1-naphtyl)-cthylcncdiaminc dihydrochloride colori metric (Meng et al.

176	2014). The entire test was executed under nature flow conditions in the daytime and separate
177	specimen exams lasted one hour. The field test location is shown in Figure 5.
178	Two separate simulation tests were conducted. First, in order to study the effect of vehicular
179	activity, the Loaded-Wheel Tester was used to simulate loading and wear on the N-doped TiO_2
180	photocatalytic asphalt road surface (see Figure 6). The photocatalytic activities of samples that
181	were subject to wear were investigated by evaluating the decomposition of NO_x in the
182	photoreactor. The second test studied the rain wash effect. The samples were placed in to \mathbf{a} traffic
183	environment from June to August in Harbin, China. After this period a wash test was conducted.
184	The samples were washed once a week and direct and indirect measurements were used to
185	evaluate decontamination ability.
186	
187	Results and discussion
188	Physical properties
189	TEM was executed to investigate the micrographs and dispersion of N-doped TiO_2 in the penetrant.
190	Fig.6 shows that the micrographs of the N-doped TiO_2 are spherical and there is no significant
191	shape change. The findings show that urea can help to hold or diminish the mean size and increase
192	the homogeneity of the size distribution via the synthesis method, which has been described by
193	other researchers (Hao-Hong et al. 2013). N-doped TiO ₂ was also well dispersed in the penetrant
194	as seen in Figure 8. An integrated method was used to ensure the dispersion effect of N-doped

- 195 TiO_2 in the penetrant. It included three techniques. One technique used a silane coupling agent as
- 196 a modifier, which should help N-doped TiO_2 to have good compatibility in the penetration process.
- 197 Another technique involved choosing a magnetic stirrer for stirring the quantitatively modified

N-doped TiO₂. In the third tenchnique, an ultrasonoscope was used to disperse the mixing solution
in order to reduce spontaneous reunion and flocculation.

200 The comprehensive dispersion method achieved a good dispersion effect for the following 201 reasons: (1) The affinity between the nanoparticles and the solvent increased; meanwhile, it was 202 easier to open the nano-granular equipment, reducing the dispersion time and energy consumption. 203 (2) The strong turbulent motion of the liquid flow caused by the magnetic stirring broke and suspended the nano-particle and the ultrasonic agitation continued to disperse the nanoparticles 204 205 into small particles, which led to a wide range of the solution region. (3) In the modifier 206 component, one end of the active groups can be adsorbed on the surface of the crashed nanoparticles and the other end of the solvent formed adsorption layer, which produced electric 207 208 charge repulsion, guaranteeing long dispersed suspension of the nanoparticles in the solvent, 209 avoiding flocculation and ensuring the stability of the system.

210 Photocatalytic activity and purification mechanism

211 Figure. 9 shows the decontamination ability of the pure TiO₂ asphalt road material and 212 N-doped TiO₂ asphalt road material, where the different wavelength lights (330–420 nm, 430–530 213 nm, 470–570 nm, and 590–680 nm) were irradiated to the samples. As seen in Figure 8, there was 214 no loss of photoactivity in 330-420 nm wavelength lights (including in the UV section) on the pure TiO2 asphalt road material and N-doped TiO2 asphalt road material. Meanwhile, the N-doped 215 216 TiO_2 asphalt road material had NO_x decontamination abilities of about 27.6%, 24.6%, 16.3%, and 217 13.8% under the irradiation of light wavelengths 330-420 nm, 430-530 nm, 470-570 nm, and 218 590-680 nm respectively. Further, on the N-doped TiO₂ asphalt road material under light 219 irradiation, the NO decontamination ability was better than the NO₂ decontamination ability.

A number of results can be extracted from Figure 9.

221 (1) N-doped TiO₂ asphalt road materials have better photocatalytic activity under visible light 222 There are two potential reasons for this. First, it is well known that photocatalysts need light 223 illumination to trigger photocatalytic oxidation. Figure 8 shows that the N-doped TiO_2 asphalt 224 road material had better NO_x decontamination ability under a wavelength range of visible light. 225 The N-doped TiO₂ asphalt road material absorbed visible light to trigger photocatalytic oxidation. 226 Second, the behavior of the N-doped TiO_2 asphalt road material in the NO_x oxidation was also 227 associated with the active species (•OH and $O_2 \bullet -$) formed on the photocatalyst's surface 228 (Todorova et al. 2013). Excite electrons were required from the valence band to create electron 229 and hole pairs. Equation 6 (Shu et al. 2004) shows that energy decreases from irradiation for 230 exciting surface electrons and holes with increasing wavelength of the visible light. It indicated 231 that the band gap might be significantly narrowed by mechanical chemistry doping of nitrogen in 232 titanium, for instance 3.08 eV (Gagoa et al. 2012).

233

 $\mathsf{E}_{g} = \frac{1239.8}{\lambda} \tag{6}$

where E_g is the band gap (eV) of the sample, λ (nm) is the wavelength of the onset of the spectrum.

(2) N-doped TiO₂ asphalt road material had different photocatalytic activity under different
 visible light wavelengths.

Figure 9 shows that the activity for the N-doped TiO_2 asphalt road material was clearly better than the pure TiO_2 asphalt road material activity with increasing wavelengths. The findings were attributed to the introduction of N in the TiO_2 lattice and the creation of extra electronic states in the TiO_2 band gap (Kumar et al. 2011). The N-doped TiO_2 samples possessed a two-step adsorption spectra. The first step may have been related to the original titanium band structure and the second adsorption step (in the visible light region) may have been related to the formation of additional electronic states during nitrogen doping (Shu et al. 2008).

246 Figure 8 shows that decontamination of the NO_x ability of the N-doped TiO₂ asphalt road 247 material decreased with increasing wavelength of the light in. The rate of electron and hole pair 248 recombination was a key factor affecting the decontamination NO_x ability of N-doped TiO₂ 249 asphalt road material (Yao-Hsuan et al.2011). Photoluminescence emission occurs when 250 wavelength photoenergy is absorbed to excite an electron from the valence band and then a longer 251 wavelength luminescence was emitted via recombination of the electron-hole pair (Chun-Hung et 252 al 2012). The greater the luminescence intensity was, the quicker the electron and hole 253 recombined. Therefore, high intensity of luminescence might result in low photocatalytic activity (Yu et al., 2005). Therefore, the N-doped TiO₂ is capable of lowering the luminescence intensity 254 255 and guiding the higher photocatalytic activity under areas with shorter wavelengths.

(3) N-doped TiO₂ asphalt road material had a complicated photocatalytic mechanism.

By following the experimental results of the present study, we found that NO_2 decontamination ability was lower on the N-doped TiO₂ asphalt road material under light irradiation. It has been shown that NO_2 was created in the photocatalytic purification process to decrease NO_2 decontamination ability. This may be explained by a tentative mechanism that is proposed to explain photocatalytic oxidation of NO_x under visible light on the N-doped TiO₂ asphalt road surface, which is shown in Figure. 10.

263 It is widely recognized that photocatalytic oxidation can be divided into 3 core stages: first

264	the transfer of contaminants from bulk to the surface; second the adsorption on the catalys	t surface
265	and formation of reactive ions; finally, degradation by the ions formed on the surface (Chuck et
266	al.2 013). Based on Figure 10, a possible photocatalytic NO_x oxidation mechanism was	proposed
267	using equations (7)-(18).	
268	N doping can build impurity states below the bottom of the conduction band of TiO	2 asphalt
269	material, causing visible TiO ₂ asphalt material to be activated by visible light (Hongqi et	al.2011).
270	N-doped TiO ₂ asphalt road material was irradiated by appropriate light and energy, creating	ng a hole
271	and electron pair in the N-doped TiO_2 lattice, shown in equation (7).	
272	$N-TiO_2 + visible light \rightarrow h_{VB}^+ + e_{CB}^-$	(7)
273	During adsorption of the reactants onto the N-doped TiO ₂ asphalt road material, the	
274	photogenerated hole in the conduction band will absorb water, oxygen, nitric oxide, and	
275	nitrogen dioxide in the air as described in equations (8) - (11).	
276	$N-TiO_2 + H_2O \Leftrightarrow N-TiO_2 - H_2O$	(8)
277	$N-TiO_2 + O_2 \Leftrightarrow N-TiO_2 - O_2$	(9)
278	$N-TiO_2 + NO \Leftrightarrow N-TiO_2-NO$	(10)
279	$N-TiO_2 + NO_2 \Leftrightarrow N-TiO_2 - NO_2$	(11)
280	In our previous work (Meng et al.2011), we found that adsorbed H_2O on the N-doped	l TiO ₂
281	leads to the formation of a highly hydroxylated surface and also gives off hydrogen ions ()	H ⁺) and
282	hydroxide ions (OH ⁻) by its dissociation. Then, H+ reacts with OH- to generate • OH.	
283	Additionally, the photoinduced electron reacts with O ₂ , forming the superoxide anion	(O ₂ -)
284	and O_2^- forms HO ₂ • radicals with traces of water. Lastly, nitrogen species (NO, NO ₂) in the	ie air can
285	be easily photocatalytically oxidized leading to HNO_3 by HO_2 • radicals on the N-doped T	ГіO ₂

asphalt road surface. The reaction is illustrated in equations (12) to (18).

$$H_2 O \to H^+ + OH^-$$
(12)

$$h^{+} + OH^{-} \rightarrow \bullet OH \tag{13}$$

$$e^- + O_2 \rightarrow O_2^- \tag{14}$$

$$HO_2 \bullet + NO \to NO_2 + \bullet OH \tag{15}$$

291
$$NO + \bullet OH \rightarrow HNO_2$$
 (16)

$$HNO_2 + \bullet OH \rightarrow NO_2 + H_2O$$
(17)

293
$$NO_2 + \bullet OH \rightarrow HNO_3$$
 (18)

294 Durability Analysis

295	Figure. 11 shows the downward trend, over consecutive months, of the NO _x decontamination
296	ability on the N-doped TiO_2 asphalt road. In order to predict the durability of the N-doped TiO_2
297	asphalt road, we hypothesized that the N-doped TiO2 asphalt road will actively degrade when the
298	NO_x decontamination rate is less 5%. An exponential regression model was used with the
299	observed data that was obtained in the field test (see Figure 11). The model was
300	$y=32.01e^{(-0.145x)}$, with 95% confidence. Results from the model showed that active degradation
301	of the asphalt pavement lasted for a period of about 13 months. The photocatalytic efficiency
302	defeat was due to the wear from traffic and the rain wash. Wear and wash simulation tests were
303	completed in order to analyze these reasons.
304	In the wear simulation test, as seen in table 2, the data showed s decrease in NO_x
305	decontamination ability after wearing. However, the decrease was small under a certain scope,
306	such as in 8000 cycles where the wheel applied a load of 600 N for every cycle. But when the

307 cycle increased (exceeding 8000 cycles), the degree of decrease in the NO_x decontamination

308	ability increased. This had two possible causes: (1) the samples kept higher NO_x removal
309	efficiencies after wear, and, (2) N-doped TiO ₂ was retained on the asphalt road surface and interior
310	after wearing, which may be proven by figure 12. This may be attributed to the research team's
311	use of infiltration liquid with N-doped TiO ₂ and the permeability loading method. The infiltration
312	liquid had a special lipophilic penetration ability. When the infiltration liquid is sprayed on the
313	road surface, the nano-material (N-doped TiO ₂) can be guaranteed to gradually infiltrate the road
314	surface under the action of the penetrating agent molecular power. Subsequently, with the growth
315	of the concentration of the asphalt pavement surface infiltration liquid and the dual influences of
316	the concentration gradient and porous open graded pavement, N-doped TiO ₂ penetrates along the
317	open graded asphalt pavement pore to the core under the action of capillary force and gravity.
318	During the penetration process, when the N-doped TiO ₂ molecules are near the asphalt mixture
319	solid surface, N-doped TiO ₂ molecules can adsorb on the solid surface in order to achieve the load.
320	This is because of the electric dipole moment and is possible because of the help of the Van Der
321	Waals force. However, when the cycle increases, the loss of weight in the samples also increases.
322	Surface wearing and particle loss may be associated with the loss of N-doped TiO ₂ particles,
323	which is shown in figure 13. NO_x decontamination ability decreases as the cycles increase.
324	Table 2 presents the average NO_x decontamination ability for both the original and the
325	washed samples. The table shows that washing the samples results in reduction in the NO_x
326	removal efficiency and this decline was aggravated with time. This indicates time dependency,
327	which will result in a decrease of the NO_x removal efficiency. There are many reasons for this.
328	First, the decrease can be clarified by referencing the NO _x purification mechanisms found in
329	section 3.2 of this paper. HNO ₃ should be speedily produced and accumulated on the top of the

330	N-doped TiO ₂ asphalt road surface, and this could inhibit the photocatalytic reactions by building
331	a physical fence. Next, regeneration of the purification ability has proven that washing is a better
332	way to keep the NO_x decontamination ability for N-doped TiO ₂ asphalt road material. During
333	washing, the HNO ₃ was easily removed from the catalyst surface (as indirect measurement results);
334	it can be argued this may contribute to catalyst regeneration. Water can also, through rehydration,
335	replenish the consumed hydroxyl radicals; therefore, it is able to maintain the photocatalyst
336	activity (Meng et al.2011). However, the continuing decrease of the NO _x removal efficiency also
337	indicated that washing did not totally recover the active N-doped TiO ₂ asphalt road material. That
338	may be due to the adsorption of indissolvable materials, such as lipids, on the photocatalyst
339	receptor sites of N-doped TiO_2 asphalt road material. Adsorption of NO_x occurred on the N-doped
340	TiO ₂ asphalt road.
341	Summary and future work
342	N-doped TiO ₂ powders were successfully prepared by sol-gel methods with urea. The
343	modified procedures did not change the crystalline structure or the morphology of the N-doped
344	TiO ₂ as compared with initial sol-gel TiO ₂ . TEM analysis revealed that N-doped TiO ₂ powders
345	could be well dispersed in asphalt penetrants. Based on the penetrant, N-doped TiO ₂ asphalt road
346	materials were successfully prepared using spray methods.
347	Meanwhile, the N-doped TiO_2 asphalt road materials presented higher activity on NO_x
348	removal than pure TiO_2 asphalt road materials under the irradiation of visible light. The outcome
349	was ascribed to the photocatalytic mechanism. As described by this mechanism, the nitrogen
350	species onto The iO_2 interfaces decreased the absorption band gap energy in the visible light and
351	hindered the electron hole recombination, which helped to improve oxidation of nitrogen oxides.

352	The durability of N-doped TiO ₂ asphalt road materials was evaluated through field and
353	simulation testing. Results suggested that the durability of N-doped TiO2 asphalt road materials
354	spanned a period of approximately 13 months. The results demonstrated that the TiO_2 nitrogen
355	doping approach would provide a worthy channel for photocatalytic asphalt road materials of
356	highly visible light induced photocatalytic activity for the practical decontamination NO_x
357	application in the medium-term.
358	Because the application of N-doped TiO ₂ asphalt road materials in demonstrating vehicle
359	emissions is still a relatively new field of study, more research should be conducted prior to field
360	application. Our research team plans to evaluate the potential pollution of nitrates created by the
361	photocatalytic processing in land through plant experiments. We will also attempt to build an
362	evaluation system for N-doped TiO ₂ asphalt road materials application for demonstrating vehicle
363	emissions.
364	Acknowledgments
365	The authors gratefully acknowledge the funding support by the National Natural Science
366	Foundation of China (Grant No. 31470611, 51378096), Research Fund for the Doctoral Program
367	of Higher Education of China (Grant No. 20120062120011) ,the Natural Science Foundation of
368	Heilongjiang Province (Grant No. E2015055) and the Fundamental Research Funds for the
369	Central Universities (Grant No. 2572014CB16), respectively.
370	
371	References
~	

372 Giacomo Barolo, Stefano Livraghi, Mario Chiesa, Maria Cristina Paganini, and Elio Giamello.

373 (2012). "Mechanism of the Photoactivity under Visible Light of N-Doped Titanium

374	Dioxide. Charge Carriers Migration in Irradiated N-TiO ₂ Investigated by Electron
375	Paramagnetic Resonance. "The Journal of Physical Chemistry C 116:20887-20894.
376	Hao-Hong Chen, Fang Lei, Jing-Tai Zhao, Ying Shi Jian-Jun Xie. (2013). "Preparation and
377	photovoltaic properties of N-doped TiO2 nanocrystals in vacuum." Journal of Materials
378	Research 28:468-47.
379	Meng Chen, Jiang-Wei Chu. (2011). "NOx photocatalytic degradation on active concrete road
380	surface d from experiment to real-scale application." Journal of Cleaner Production 19:
381	1266-1272.
382	Meng Chen, Li sheng Jin, Yanhua Liu, Xiurong Guo, Jiangwei Chu. (2014). "Decomposition of
383	NO in automobile exhaust by plasma-photocatalysis synergy." Environmental Science and
384	Pollution Research 21:1242–1247.
385	Meng Chen, Yan hua Liu. (2010). "NO _x removal from vehicle emissions by functionality surface
386	of asphalt road." Journal of Hazardous Materials 174:375–379.
387	Poon CS, Cheung E (2006). "NO removal efficiency of photocatalytic paving blocks prepared
388	with recycled materials." Construction and Building Materials 21: 1746–53.
389	Husken G, Hunger M, Brouwers H. (2007). "Comparative study on cementitious products
390	containing titanium dioxide as photo-catalyst. " In: Baglioni P, Cassar L, eds. RILEM Int.
391	Symp. On Photocatalysis. Environment and Construction Materials. Italy 147–54.
392	G.L.Guerrini, E.Peccati. (2007). "Photocatalytic cementitious roads for depollution, in: P.Baglioni,
393	L. Cassar (Eds.), Proceedings international RILEM symposium on photocatalysis."
394	Environment and construction materials-TDP 2007, RILEM Publications, Bagneux
395	187–194.

396	Ishihara, H., Koga, H., Kitaoka, T., Wariishi, H., Tomoda, A., Suzuki, R. (2010). "Paper-structured							
397	catalyst for catalytic NOx removal from combustion exhaust gas. " Chemical Engineering							
398	Journal 65: 208–213.							
399	Marwa Hassan, Louay N. Mohammad, Somayeh Asadi. (2013). "Sustainable Photocatalytic							
400	Asphalt Pavements for Mitigation of Nitrogen Oxide and Sulfur Dioxide Vehicle							
401	Emissions." Journal of Materials in Civil Engineering 3:365-371.							
402	Chun-Hung Huanga, I-Kai Wanga, Yu-Ming Linb, Yao-Hsuan Tsengc, Chun-Mei Lud. (2010).							
403	"Visible light photocatalytic degradation of nitric oxides on PtOx-modified TiO2 via							
404	sol-gel and impregnation method." Journal of Molecular Catalysis A: Chemical							
405	316:163–170.							
406	Chun-Hung Huang, Yu-Ming Lin, I-Kai Wang, and Chun-Mei Lu. (2012). "Photocatalytic Activity							
407	and Characterization of Carbon-Modified Titania for Visible-Light-Active							
408	Photodegradation of Nitrogen Oxides." International Journal of Photoenergy 2012: 1-13.							
409	Venturini, L., and Bacchi, M. (2009). "Research, design, and development of a photocatalytic							
410	asphalt pavement. "Proc., 2nd Int. Conf. on Environmentally Friendly Roads, Road and							
411	Bridge Research Institute, Warsaw, Poland 1–16.							
412	Marwa M.Hassan, Heather Dylla, Louay N.Mohammad, Tyson Rupnow. (2010). "Evaluation of							
413	the durability of titanium dioxide photocatalyst coating for concrete pavement."							
414	Construction and Building Materials 24:1456–1461.							
415	Todorova.N, T.Vaimakis, D. Petrakis, S. Hishita, N. Boukos, T. Giannakopoulou, M. Giannouri, S.							
416	Antiohos, D. Papageorgiou, E. Chaniotakis, C. Trapalis. (2013). "N and N,S-doped TiO ₂							

417 photocatalysts and their activity in NOx oxidation. "Catalysis Today 209:41–46.

418	Tarek Mohamed Naser, Isao Kanda, Toshimasa Ohara, Kazuhiko Sakamoto, Shinji Kobayashi,
419	Hiroshi Nitta, Taro Nataami. (2009). "Analysis of traffic-related NO_x and EC
420	concentrations at various distances from major roads in Japan." Atmospheric Environment
421	43: 2379–2390.
422	David Osborn, Marwa Hassan, Somayeh Asadi, John R. White. (2014). "Durability Quantification
423	of TiO ₂ Surface Coating on Concrete and Asphalt Pavements." Journal of Materials in
424	Civil Engineering 26:331-337.
425	Gagoa.R, A. Redondo-Cubero b, M. Vinnichenkoc, J. Lehmannc, F. Munnikc, F.J. Palomares.
426	(2012). "Spectroscopic evidence of NO_x formation and band-gap narrowing in N-doped
427	TiO ₂ films grown by pulsed magnetron sputtering." Materials Chemistry and Physics
428	136:729-736.
429	Shinri Sato. (1986). "Photocatalytic activity of NOx-doped TiO2 in the visible light region."
430	Chemical Physics Letters 123:126-128.
431	Kumar.S.C, L.G. Devi. (2011). "Review on modified TiO ₂ photocatalysis under UV/visible light:
432	selected results and related mechanisms on interfacial charge carrier transfer dynamics."
433	Journal of Physical Chemistry A 115:13211–13241.
434	Hongqi Sun, Ruh Ullah, Siewhui Chong, Hua Ming Ang, Moses O. Tadé, Shaobin Wang. (2011).
435	"Room-light-induced indoor air purification using an efficient Pt/N-TiO ₂ photocatalyst."
436	Applied Catalysis B: Environmental 108–109:127–133.
437	Yao-Hsuan Tseng, Chien-Hung Kuo. (2011). "Photocatalytic degradation of dye and NO _x using
438	visible-light-responsive carbon-containing TiO ₂ ." Catalysis Today 174:114–120.
439	Yu.Y, J. C. Yu, J. G. Yu. (2005). "Enhancement of photocatalytic activity of mesoporous TiO_2 by

using carbon nanotubes." Applied Catalysis A289: 186–196.

441	Shu Yin, Bin Liu, Peilin Zhang, Takeshi Morikawa, Ken-ichi Yamanaka, and Tsugio Sato. (2008).
442	"Photocatalytic Oxidation of NO_x under Visible LED Light Irradiation over
443	Nitrogen-Doped Titania Particles with Iron or Platinum Loading." Joural of Physical
444	Chemistry. C 112: 12425–12431.
445	Shu Yin, Hiroshi Yamaki, Qiwu Zhang, Masakazu Komatsu, Jinshu Wang, Qing Tang, Fumio Saito,
446	Tsugio Sato. (2004). "Mechanochemical synthesis of nitrogen-doped titania and its visible
447	light induced NO _x destruction ability." Solid State Ionics 172:205–209.
448	Chuck W.F. Yu, Jeong Tai Kim. (2013). "Photocatalytic Oxidation for Maintenance of Indoor
449	Environmental Quality." Indoor and Built Environment 22: 139-51.
450	
451	
452	
453	
454	
455	
455	
456	

Table 1 parameter nomenclature

Parameter	Meaning					
NO _{conversion} (%)	effective purifying rate of NO					
NO _{2conversion} (%)	effective purifying rate of NO ₂					
NO _{xconversion} (%)	effective purifying rate of NO _x					
C _{NOin} (mg/m ³)	the initial steady-state NO concentration (before turn on					
	the light source)					
C _{NO2in} (mg/m ³)	the initial steady-state NO2 concentration (before turn					
	on the light source)					
C _{NOxin} (mg/m ³)	the initial steady-state NOx concentration (before turn					
	on the light source)					
C _{NOlight} (mg/m ³)	the NO concentration during irradiation phase					
C _{NO2light} (mg/m ³)	the NO ₂ concentration during irradiation phase					
C _{NOxlight} (mg/m ³)	the NO _x concentration during irradiation phase					
C _{NObin} (mg/m ³)	the initial steady state NO concentration					
$C_{NO2bin} \left(mg/m^3\right)$	the initial steady state NO2 concentration					
$C_{NOxbin} (mg/m^3)$	the initial steady state NO _x concentration					
$C_{\rm NOsb} (mg/m^3)$	the NO concentration at the end of the blank					
	experiment(without irradiation)					
C _{NO2sb} (mg/m ³)	the NO ₂ concentration at the end of the blank					
	experiment(without irradiation)					
C_{NOxsb} (mg/m ³)	the NO_x concentration at the end of the blank					
	experiment(without irradiation)					

Table 2 Degradation effect of wear and wash

	Number of wear (cycle)				Number of wash (time)					
DenO _x ability	0	4000	8000	12000	16000	0	2	4	6	8
Direct										
measurement-purification	36.4	34.8	32.1	28.1	22.3	36.4	34.2	32.8	29.3	24.6
rate (%)										
Indirect measurement										
nitrate concentrations s in	8.3	8.1	7.2	5.5	3.8	8.3	7.9	7.3	6.1	4.1
the sample (mg/L)										

Fig 1. Pure TiO2 and N-doped TiO2

Fig 2. Asphalt road material sample before spray

Fig 3. N-doped TiO_2 asphalt road material sample

Fig 4. Structure of photoreactor

Fig 5. Spot of field test

Fig 6. Simulation test on vehicular activity effect

Fig 7. Micrographs of the N-doped TiO_2

Fig 8. Dispersion effect of N-doped TiO_2 in penetrant

Fig 9 Comparison of the photocatalytic activity of undoped, N-doped TiO₂ asphalt road material under UV and visible light

Fig 10. Schematic illustration of photocatalytic process on N-doped TiO2 asphalt road material under visible light

Fig 11 Illustration of durability of N-doped TiO₂ asphalt road

Fig 12 SEM image of road surface after wearing

Fig 13 SEM on loss of N-doped TiO_2 due to wearing

- Fig 1. Pure TiO_2 and N-doped TiO_2
- Fig 2. Asphalt road material sample before spray
- Fig 3. N-doped TiO₂ asphalt road material sample
- Fig 4. Structure of photoreactor
- Fig 5. Spot of field test
- Fig 6. Simulation test on vehicular activity effect
- Fig 7. Micrographs of the N-doped TiO_2
- Fig 8. Dispersion effect of N-doped TiO₂ in penetrant
- Fig 9 Comparison of the photocatalytic activity of undoped, N-doped TiO2 asphalt road material under UV and

visible light

- Fig 10. Schematic illustration of photocatalytic process on N-doped TiO2 asphalt road material under visible light
- Fig 11 Illustration of durability of N-doped TiO2 asphalt road
- Fig 12 SEM image of road surface after wearing
- Fig 13 SEM on loss of N-doped TiO $_2$ due to wearing